
Fault Tolerance in MPI Programs

Bill Gropp
Rusty Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne National Laboratory + University of Chicago

Outline
• Myths about MPI and fault tolerance
• Definitions of fault tolerance
• Relevant parts of the MPI standard
• MPI can support a class of fault-tolerant programs

• If implementation provides certain features
• Example of fault-tolerant master-slave program in MPI

• Modifying the MPI Standard to allow more fault-
tolerant programs
• Changing semantics of existing MPI functions – Ack!!
• Adding new MPI objects and methods

• Disclaimer – These are preliminary thoughts.

Argonne National Laboratory + University of Chicago

Myths and Facts
Myth: MPI behavior is defined by its implementations.
Fact: MPI behavior is defined by the Standard Document at

http://www.mpi-forum.org

Myth: MPI is not fault tolerant.
Fact: This statement is not well formed. Its truth depends on what it

means, and one can’t tell from the statement itself. More later.

Myth: All processes of MPI programs exit if any one process crashes.
Fact: Sometimes they do; sometimes they don’t; sometimes they

should; sometimes they shouldn’t. More later.

Myth: Fault tolerance means reliability.
Fact: These are completely different. Again, definitions are required.

Argonne National Laboratory + University of Chicago

More Myths and Facts
Myth: Fault tolerance is independent of performance.
Fact: In general, no. Perhaps for some (weak) aspects, yes. Support

for fault tolerance will negatively impact performance.

Myth: Fault tolerance is a property of the MPI standard (which it doesn’t
have.

Fact: Fault tolerance is not a property of the specification, so it can’t not
have it. ☺

Myth: Fault tolerance is a property of an MPI implementation (which
most don’t have).

Fact: Fault tolerance is a property of a program. Some implementations
make it easier to write fault-tolerant programs than others do.

Argonne National Laboratory + University of Chicago

What is Fault Tolerance Anyway?
• A fault-tolerant program can “survive” (in some sense we need

to discuss) a failure of the infrastructure (machine crash,
network failure, etc.)

• This is not in general completely attainable. (What if all
processes crash?)

• How much is recoverable depends on how much state the failed
component holds at the time of the crash.
• In many master-slave algorithms a slave holds a small amount of

easily recoverable state (the most recent subproblem it received).
• In most mesh algorithms a process may hold a large amount of

difficult-to-recover state (data values for some portion of the
grid/matrix).

• Communication networks hold varying amount of state in
communication buffers.

Argonne National Laboratory + University of Chicago

Types of “Survival”
• The MPI library automatically recovers.
• Program is notified of problem and takes corrective

action.
• Certain operations, but not all, become invalid.
• Program can be restarted from checkpoint.
• Perhaps combinations of these.

Argonne National Laboratory + University of Chicago

What Does the MPI Standard Say That is
Relevant to Fault Tolerance?
• MPI requires reliable* communication. An

implementation in which a message is corrupted in
transit is a non-conforming MPI implementation.
(People at LANL know who you are.)

• MPI allows users to attach error handlers to
communicators.
• MPI_ERRORS_ABORT, the “all-fall-down” error handler, is

required to be the default.
• MPI_ERRORS_RETURN can be used to allow applications (and

especially libraries) to handle errors.
• Users can write and attach their own error handlers on a

communicator-by-communicator basis.
*guaranteed delivery, for network types

Argonne National Laboratory + University of Chicago

What Does the Standard Say About
Errors?
• A set of errors is defined, to be returned by MPI functions if

MPI_ERRORS_RETURN is set.
• Implementations are allowed to extend this set.
• It is not required that subsequent operations work after an error

is returned. (Or that they fail, either.)
• It may not be possible for an implementation to recover from

some kinds of errors even enough to return an error code (and
such implementations are conforming).

• Much is left to the implementation; some conforming
implementations may return errors in situations where other
conforming implementations abort. (See “quality of
implementation” issue in the Standard.)

Argonne National Laboratory + University of Chicago

Some Approaches to Fault Tolerance in
MPI Programs
• Master-slave algorithms using intercommunicators

• No change to existing MPI semantics
• Example follows

• Checkpointing
• In wide use now
• Plain vs. fancy
• MPI-IO can help make it efficient

• Change semantics of existing MPI functions
• Don’t go there!

• Extending MPI with some new objects in order to allow
a wider class of fault-tolerant programs.
• The “pseudo-communicator”

Argonne National Laboratory + University of Chicago

Master/Slave Programs with
Intercommunicators
• One type of program easy to make fault-tolerant is the

master/slave paradigm (seti@home).
• This is because slaves hold very small amount of state

at a time.
• Such an algorithm can be expressed in MPI, using

intercommunicators to provide a level of fault-
tolerance, if the MPI implementation provides a robust
implementation of MPI_ERRRORS_RETURN for
intercommmunicators.

Argonne National Laboratory + University of Chicago

A Fault-Tolerant MPI Master/Slave
Program
• Master process comes up alone first.

• size of MPI_COMM_WORLD = 1
• It creates slaves with MPI_Comm_spawn

• Gets back an intercommunicator for each one
• Sets MPI_ERRORS_RETURN on each

• Master communicates with each slave using its particular
communicator
• MPI_Send/Recv to/from rank 0 in remote group
• Master maintains state information to restart each subproblem in case

of failure
• Master may start replacement slave with MPI_Comm_spawn
• Slaves may themselves be parallel

Argonne National Laboratory + University of Chicago

Checkpointing
• Application-driven vs. externally-driven

• Application knows when message-passing subsystem is quiescent
• Checkpointing every n timesteps allows very long (months) ASCI

computations to proceed routinely in face of outages.
• Externally driven checkpointing requires much more cooperation from

MPI implementation, which may impact performance.
• MPI-IO can help with large, application-driven checkpoints
• “Extreme” checkpointing – MPICH-V (Paris group)

• All messages logged
• States periodically checkpointed asynchronously
• Can restore local state from checkpoint + message log since last

checkpoint
• Not high-performance
• Scalability challenges

Argonne National Laboratory + University of Chicago

Extending MPI
• New objects and methods with new syntax and semantics to

support the expression of fault-tolerant algorithms in MPI
• Example – The MPI_Process_Array object, somewhat like an MPI

Communicator (retains idea of context), but
• Has dynamic instead of constant size
• Rank of process replaced by constant array index
• No collective operations for process arrays
• New send/receive operations would be defined for processes identified by

an index into a process array.
• Can have attached error handler

• Might be more convenient than an intercommunicator-based
approach for master/slave computations where slaves
communicate among themselves.

Argonne National Laboratory + University of Chicago

Conclusion
• Fault tolerance is a property of an algorithm, not a library

• Management of state is the key
• It is important to be able to express a fault-tolerant parallel

algorithm as an MPI program
• Some solutions are already in use
• Implementations can provide more support than they currently

do for fault tolerance, without changing the MPI specification
• Additions to the MPI Standard may be needed to extend the

class of fault tolerant algorithms that can be expressed in MPI
• Further research is needed, first in improvements to MPI-2

implementations, and eventually into MPI extensions

